Code archives/Algorithms/special prime numbers
This code has been declared by its author to be Public Domain code.
Download source code
| |||||
| Enter a multiple of 6 in the program, and the program will evaluate the first prime number after the number you entered, by trying to add little prime numbers to it. This program can be powerfull with : blitzmax + linux + (a supercalculator or a cluster) + an adaptation of the source code to find very very big prime numbers. I think this algorythm can be better than the mersenne algorythm. The proof have to be done... | |||||
Local cpt:Long=0
Local i:Long=0
Local k:Long=0
a$=Input("Nombre multiple de 6 ou 'q' pour quitter (Number multiple of 6 or 'q' to quit) :")
If Lower(a$)="q" Then End
cpt=Long(a$)
i=5
flag=0
While flag=0
k=cpt+i
flag=IsPremier(k)
If KeyDown(KEY_ESCAPE)=True Then End
If flag=1
Print cpt+" + "+i+" = "+(cpt+i)+" est premier (is prime)"
Else
Print cpt+" + "+i+" = "+(cpt+i)+" n'est PAS premier (is not prime)"
i=i+1
While IsPremier(i)=0
If KeyDown(KEY_ESCAPE)=True Then End
i=i+1
Wend
EndIf
Wend
End
SetClsColor 0,0,0
Cls
SetColor 255,255,255
Function IsPremier(a:Long)
Local j:Long
If a=0 Then Return 0
If a=1 Then Return 0
If a=2 Then Return 1
If (a Mod 2)=0 Then Return 0
For j=1 To Long((a-3)/2)
If KeyDown(KEY_ESCAPE)=True Then End
If (a Mod (j+1))=0 Then Return 0
Next
Return 1
EndFunction |
Comments
| ||
| After an adaptation of the source code, you can find a big prime number like this (with a supercalculator) : 6*(10^10.000.000)+p is prime, with p as a prime number, testing if the result is prime with p=5, p=7, p =11, etc... 100000$ are offered by a company on the web to find a number like this. But money go to money... (tears...lol) because a supercalculator is very expensive !!! |
Code Archives Forum